Potential energy → stored energy

$\overline{)\mathbf{P}\mathbf{.}\mathbf{E}\mathbf{.}\mathbf{=}\mathbf{mgh}}$

PE ball 1 = PE ball 2 = PE

mass ball 1 = m_{1}

mass ball 2 = 2 m_{1}

$\frac{\mathbf{P}\mathbf{.}\mathbf{E}}{{\mathbf{m}}_{\mathbf{1}}\mathbf{g}}\mathbf{=}\frac{\overline{){\mathbf{m}}_{\mathbf{1}}\mathbf{g}}{\mathbf{h}}_{\mathbf{1}}}{\overline{){\mathbf{m}}_{\mathbf{1}}\mathbf{g}}}\phantom{\rule{0ex}{0ex}}{\mathbf{h}}_{\mathbf{1}}\mathbf{=}\frac{\mathbf{P}\mathbf{.}\mathbf{E}}{{\mathbf{m}}_{\mathbf{1}}\mathbf{g}}$

Suppose you toss a tennis ball upward. (e) If the same amount of energy were imparted to a ball the same size as a tennis ball, but of twice the mass, how high would it go in comparison to the tennis ball?

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Kinetic & Potential Energy concept. You can view video lessons to learn Kinetic & Potential Energy. Or if you need more Kinetic & Potential Energy practice, you can also practice Kinetic & Potential Energy practice problems.